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We present simulations of granular flows in a modified Couette cell, using a continuum model recently
proposed for dense granular flows. Based on a friction coefficient, which depends on an inertial number, the
model captures the positions of the wide shear bands. We show that a smooth transition in velocity-profile
shape occurs when the height of the granular material is increased, leading to a differential rotation of the
central part close to the surface. The numerical predictions are in qualitative agreement with previous experi-
mental results. The model provides predictions for the increase of the shear band width when the rotation rate
is increased.
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Divided materials such as granular material often exhibit
a localization of deformations when slowly sheared �1–3�.
This behavior produces shear bands that are generally nar-
row, typically 10 grain diameters wide for a granular flow.
They often take place close to boundaries or at the interface
between a flowing and a static part. Quasistatic motions are
experimentally observed inside these bands and can lead to
different velocity profiles, such as exponential or Gaussian,
depending on the system �2,4�. However a theoretical frame-
work is still lacking to understand them. A modified Couette
configuration has recently brought the possibility of observ-
ing wide shear bands in granular media �5� and allows a
deeper test of recent theories �6,7�. In this configuration,
sketched in Fig. 1�a�, the bottom is split into a rotating disk
�at a given angular velocity �0� and a ring fixed to the wall
at rest. The three control parameters are the radius of the disk
Rs, the filling thickness H, and the angular velocity �0. The
experimental results are summarized here. For a small thick-
ness compared to the disk radius, the disk drives the rotation
of a column up to the free surface as shown in Fig. 1�b�.
However, when the height is large, only a dome rotates,
deeply below the surface �Fig. 1�d��. The transition occurs
around the ratio H /Rs=0.7 �5,8,9�, where two shear bands
exist �Fig. 1�c��. In this regime, a differential rotation �called
precession in the following� appears: the central upper part
rotates more slowly than the bottom �9,10�. A theoretical
model, which is based on the principle of minimization of
the Coulomb friction dissipation, predicts infinitely sharp
shear bands and a hysteretic transition between open and
closed regimes �6�. Török et al. recently introduced a random
disorder; they found a smooth transition and wide shear
bands with correct scaling laws when averaging over an en-
semble of sharp bands �11�.

In this Brief Report, we present an alternative approach. A
constitutive law has been proposed, which quantitatively de-
scribes some dense surface flows and instabilities �12–14�.
Could this hydrodynamic model describe the flow in the
modified Couette cell? What are the shapes of bands and is
there a smooth transition?

In the local model proposed in �12�, the granular media is
described as an incompressible fluid governed by a visco-
plastic constitutive law. Assuming an ensemble of grains of

diameter d and density �s, the shear stress �ij is related to the
strain rate �̇ij as follows:

�ij = − P�ij + �ij with �ij =
��I�P

��̇�
�̇ij � 	�̇ij , �1�

where P is the isotropic pressure, ��I� is a friction coeffi-
cient, which depends on the inertial number I �I
= ��̇�d /�P /�s�, the norm �X� corresponds to �XijXij /2, and 	
is the effective viscosity. The friction coefficient starts from a
minimum value �s and increases with I �see Ref. �12� for
details about the rheology�. Although this model was not
designed to reproduce quasistatic creeping flows �the consti-
tutive law ensures the existence of a finite yield stress ���

�sP�, we expect it could contribute to understanding what
kind of phenomenon underlies the properties of shear bands
in this geometry. We assume the flow to be axisymmetric and
compute the axial velocity u��r ,z�=r��r ,z� only in a radial
section of the cell, governed by the following equations:
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FIG. 1. �a� Modified Couette cell. The bottom is split into a
rotating disk and an outer ring at rest. From previous studies, in the
stationary state, three regimes are identified depending on the filling
height �the hatched areas rotate as quasisolid bodies�: �b� the open
regime, �c� the intermediate regime when H /Rs
0.7, and �d� the
closed system.
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The simulations are made on a fixed grid �72�72�. Using a
finite-difference scheme, we integrate the Cauchy equation
for � from the material at rest until a steady state is reached
with the following boundary conditions: a stress-free condi-
tion at the free surface and a no-slip-velocity condition at the
wall and at the bottom �the angular velocity is then given by1

����z=0�=�0 for rRs and 0 for r
Rs�. The set of param-
eters used in simulations is similar to the experimental one
found in Ref. �10�. To simplify computations, we assume
moreover that the free surface remains flat and horizontal:
for low angular velocities the elevation is negligible and
would reach 5% of the radius for a viscous fluid when �0 is
multiplied by 20. The pressure is thus the sum of a hydro-
static part and an inertial part due to the rotation.

Figures 2�a�–2�c� show typical angular-velocity profiles in
the radial section of the cylinder for three different filling
heights. For H /d=105 �H /Rs=0.59�, the central part, which
rotates, emerges at the surface of the granular material �Fig.
2�a��. For H /d=130 �H /Rs=0.73� in Fig. 2�c�, the rotating
zone is reduced to a cupola near the rotating disk. Close to
the transition �Fig. 2�b��, we observe two shear bands
�H /Rs=0.706�: three quasirigid bodies are separated by nar-
row shear bands. The angular velocity of the upper central
part is between 0 and �0. A first conclusion of this study is
that the continuum model qualitatively reproduces the ex-
perimentally observed phenomenon. Can it also describe the
shape and the width of these shear bands? To study the
shape, we define the position of shear bands in the bulk by
the points where the angular velocity equals the average

value of neighboring zones. Figure 2�d� shows the positions
of the shear bands zc�rc� for different filling heights. The
continuous lines correspond to the extreme regimes. For in-
creasing heights, the open shear band is more curved and is
closer to the center. When the transition occurs, its radius at
the free surface seems to reach a limit and the open shear
band vanishes, while the closed one appears below the sur-
face. Both coexisting shear bands are shown by the dashed
lines in Fig. 2�d�. The dotted line corresponds to the empiri-
cal scaling of the shear position at the free surface �in the
open state� from experiments of Fenistein et al. �8�. It is in
good agreement with the curve tips of our simulations, but a
slight departure can be observed, as obtained by the Unger et
al. model �6�.

Let us consider in more detail the intermediate regime,
where our simulations reveal the existence of two shear
zones bordering three rigid parts: the bottom rotates at �0,
the lateral part is at rest, and, in between, the upper central
part rotates at a smaller angular velocity. To analyze the evo-
lution of this phenomenon and to compare it with the experi-
mental one �10�, we plot in Fig. 3 the normalized difference
between the angular velocity at the bottom and at the free
surface on the symmetric axis: �p= �1−� /�0�z=H,r=0. For a
given angular velocity, we obtain first that the transition be-
tween open and closed systems is continuous, as observed in
experiments �10� and discrete element method �DEM� simu-
lations �9,15�. We do not find any hysteretic phenomenon,
unlike the predictions of Unger et al.’s model �6�. However,
the transition, which occurs around H /Rs
0.7, is sharper in
our simulations than in experiments, although the simulated
curve �squares� and the Fenistein et al. experimental ones
�crosses� correspond to the same set of parameters. This
could be because of the inability of our model to capture the
quasistatic properties due to nonlocal effects �16�. The im-
portant point is thus that we can reproduce the smooth tran-
sition using a shear-rate-dependent friction coefficient. As a
consequence, the observed precession is the result of the su-

1In previous studies, the inner disk is at rest while the outer ring
rotates. We have checked that even in the worst case the resulting
profiles differ by less than 2% due to the radial acceleration.
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FIG. 2. �Color online� �a�–�c� Stationary an-
gular velocity profiles in a radial section of the
Couette cell for Rs=180d���=� / �g /d�1/2�. �a�
H=105d �H /Rs=0.59�; the rotation reaches the
free surface �open regime�. �b� H=126.5d
�H /Rs=0.706�; this case corresponds to the tran-
sitory regime. �c� H=130d �H /Rs=0.73�; above
the transition we observe the closed regime. �d�
Position of the shear bands for different aspect
ratios. Solid lines: H /Rs=0.39, 0.5, 0.59, 0.63,
and 0.66 �open systems�, and 0.73, 0.78, and 0.84
�closed systems�. Dashed lines: H /Rs=0.700,
0.706, and 0.714 �intermediate regime�. Dotted
line: experimental position of the shear band at
the free surface from Ref. �8�.
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perposition of two shear bands. When the rotation rate is
increased by a factor of 20 ��0=3.2 rad s−1�, the transition
zone broadens as shown by the precession ratio �p in Fig. 3
�triangles�. We can note, moreover, that, if the radial accel-
eration is negligible �left part of Eq. �3��, the equations gov-
erning the model are invariant when all lengths are normal-
ized by Rs and velocities are divided by Rs

3/2. The latter
exponent comes from the expression for I. The rescaled vari-
ables are then H /Rs, W /Rs, and � /Rs

1/2. The dependence on
�0 can be translated in terms of Rs: for very large systems;
the extent of transition should decrease for increasing Rs.
This prediction is in agreement with Török et al.’s model
�11�, which predicts an infinitely sharp transition for Rs
→�.

We now focus on the width of shear bands at the free
surface and in the bulk, first for a low angular velocity ��0
=0.16 rad s−1�. In the following, we will extract the band-
widths from the angular-velocity profiles in the surface and
along the symmetric axis in the bulk, fitted by an error func-
tion: � /�0=1 /2+ �1 /2�erf��Xc−x� /W� �the axial shear band
is very well fitted whereas the surface velocity profile is
more linear�. Following the dimensional analysis, we use the
scaling W /Rs. The open shear band, whose evolution with
the filling height is shown in Fig. 4�a�, is very narrow. The
width W increases with H /Rs �white circles� and suddenly
decreases below the resolution of the grid close to the tran-
sition �gray region�. After the transition, we plot the width of
the vertical shear band along the axis of the cylinder. The
vertical width in the closed system �black circles� is here
larger and decreases with increasing height. Comparing with
experimental and numerical results �9–11�, we can see that
our open shear bands are very narrow but that the width of
the closed shear bands is of the same magnitude.

For a higher angular velocity ��0=3.2 rad s−1�, in addi-
tion to the enlargement of the transition range, both radial
and vertical shear bands widen �Fig. 4�b��. The global behav-
ior is similar to that at low velocity, except that, in that case,
the variations of the widths within the transition state are
more obvious: the widths of each band go to zero as they
disappear. These variations of widths can be understood as

follows: the rheology reduces to a Coulomb friction law for
small I �the normalized shear rate�, so when the velocity
difference between two neighboring zones decreases, the
friction coefficient decreases and the shear bands become
narrower. These modifications of widths with respect to �0
are in contrast with what is observed in direct simulations
and in experiments, where the velocity pattern is constant
over a given range of rotation rate �8,9�. Before drawing
conclusions on this point, we study in more detail the influ-
ence of the driven velocity on the width of the shear bands.

In the following paragraph, we focus on two given aspect
ratios: an open �H /Rs=0.5� and a closed shear band �H /Rs
=0.84�. First, we observe that the positions of the shear
bands are quite unchanged when the rotation is increased: the
position of the open one moves very slightly toward the cen-
ter. Second, we study the evolutions of widths with respect to
the angular velocity as shown in Fig. 5. For the open shear
band, the width increases with a power law in angular veloc-
ity which exponent is �=0.38. This relation means first that,
in the limit of very low angular velocity, this shear band is
infinitely narrow. This is consistent with the fact that our
model reduces to a simple Coulomb friction law �a Drucker-
Prager criterion� for I→0. In Unger et al.’s model �6�, a
constant friction law produces sharp shear bands. Concern-
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FIG. 3. �Color online� Precession of the surface core: normal-
ized difference of angular velocity �p= �1−� /�0�z=H,r=0 as a func-
tion of the rescaled height H /Rs. Comparison between simulations
for two angular velocities ��0=0.16 � and 3.2 △ rad·s−1� and
experimental results from Ref. �10� ���.
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FIG. 4. �Color online� Evolution of shear band widths as a func-
tion of the aspect ratio through the transition for two different an-
gular velocities: �0= �a� 0.16 � and �b� 3.2 � rad·s−1. White
�black� symbols correspond to open �closed� shear bands and the
gray regions to the transition zone �0.03�p0.97�.
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FIG. 5. �Color online� Evolution of the width of a closed
�H /Rs=0.84 �� and an open �H /Rs=0.50 �� shear band as a func-
tion of angular velocity �0. The data are fitted by a power law of
exponent 0.38 �line�. For the highest velocity and the open regime,
the assumption of a flat free surface is no longer valid.
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ing the closed shape, the widths have roughly the same be-
havior, but for low rotation rate we observe a slight departure
from the power law. This behavior might be attributed to a
numerical artifact that vanishes when the size of the mesh
grid decreases. Since this numerical effect does not alter the
open shear band, we assume that the geometry could influ-
ence these two shear bands in different ways. From the di-
mensional analysis, the scaling for the radial width reported
in previous papers �W /Rs

2/3= f�H /Rs�� �10,11� cannot be de-
rived: First, we find that W /Rs is the relevant variable for the
closed regime in the inertial regime; second, the observed
scaling law for the open shear band, W /Rs��0

� �i.e.,
��0

� /Rs
�/2�, implies instead that W /Rs

� is a function of H /Rs
for a given �0, with �=1−� /2
0.84. This discrepancy
with previous results could come from the inability of the
model to reproduce quasistatic phenomena, which govern the
precise shape of shear bands. However, this dependence on
the rotation rate might be seen experimentally for higher
angular velocities ��I�
3�10−3 for �0
0.02�g /d�.

In conclusion, we have shown that a continuum model
based on a hydrodynamic approach allows the computation
of the main properties of shear bands in the modified Couette
geometry: the threshold, which corresponds to a three-
dimensional generalization of the Coulomb friction threshold
�����sP�, is sufficient to determine the positions of the

shear bands, and the experimentally observed transition in
shapes is qualitatively reproduced. Second, we predict a
smooth transition, which differs from the first-order transi-
tion predicted by Unger et al.’s model. This comes from the
increase of � with the inertial number inside the shear band
and from the superposition of two shear zones. As in the
plane Couette geometry without gravity, the model predicts
wide shear bands as long as � depends on I. However, the
correct widths are not predicted, especially the width of the
radial shear band. This problem arises mainly from the qua-
sistatic properties of the flow, but when we leave the quasi-
static regime and enter the dense regime �locally I
0.05�,
some predictions, which can be tested experimentally, are
made concerning the evolution of these bands with respect to
�0. In experiments at low shear, the effects of I may be
hidden by other phenomena. Another parameter, such as the
one used in the Depken et al. shear-free-sheet model �7�,
may select the properties of the velocity profiles, or the as-
sumption of an isotropic pressure, which seems valid in rapid
flows, may fail as it does in static piles.

The author thanks O. Pouliquen and Y. Forterre for dis-
cussions and carefully reading the manuscript and also M.
van Hecke for useful discussions.
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